375 research outputs found

    Portuguese Nouns and Their Plurals Checklist

    Get PDF
    Nouns in Portuguese take different forms in the singular (one) and the plural (more than one). In the majority of cases the formation of the plural is based on the singular form, with a change in ending. In the great majority of cases these changes are based on certain rules, which are summarised in this document for easy reference

    The Formal Command or Imperative Form in Portuguese

    Get PDF
    An cloze exercise in Word format testing the student's knowledge of the formal imperative or command form in Portuguese, conjugated in exactly the same way as the present subjunctive tense. This is embedded in a series of sentences giving advice on how to get on in the world of employment. This document can be adapted for a class-based activity: once they have mastered this particular grammar point, the students complete the sentences below by converting the infinitive form in brackets to the formal imperative

    Attitudes towards the use and acceptance of eHealth technologies : a case study of older adults living with chronic pain and implications for rural healthcare

    Get PDF
    Acknowledgements The research described here is supported by the award made by the RCUK Digital Economy programme to the dot.rural Digital Economy Hub; award reference: EP/G066051/1. MC’s time writing the paper is funded by the Scottish Government’s Rural and Environmental Science and Analytical Services Division (RESAS) under Theme 8 ‘Vibrant Rural Communities’ of the Food, Land and People Programme (2011–2016). MC is also an Honorary Research Fellow at the Division of Applied Health Sciences, University of Aberdeen. The input of other members of the TOPS research team, Alastair Mort, Fiona Williams, Sophie Corbett, Phil Wilson and Paul MacNamee who contributed to be wider study and discussed preliminary findings reported here with the authors of the paper is acknowledged. We acknowledge the feedback on earlier versions of this paper provided by members of the Trans-Atlantic Rural Research Network, especially Stefanie Doebler and Carmen Hubbard. We also thank Deb Roberts for her comments.Peer reviewedPublisher PD

    Parkinson's disease biomarkers: perspective from the NINDS Parkinson's Disease Biomarkers Program

    Get PDF
    Biomarkers for Parkinson's disease (PD) diagnosis, prognostication and clinical trial cohort selection are an urgent need. While many promising markers have been discovered through the National Institute of Neurological Disorders and Stroke Parkinson's Disease Biomarker Program (PDBP) and other mechanisms, no single PD marker or set of markers are ready for clinical use. Here we discuss the current state of biomarker discovery for platforms relevant to PDBP. We discuss the role of the PDBP in PD biomarker identification and present guidelines to facilitate their development. These guidelines include: harmonizing procedures for biofluid acquisition and clinical assessments, replication of the most promising biomarkers, support and encouragement of publications that report negative findings, longitudinal follow-up of current cohorts including the PDBP, testing of wearable technologies to capture readouts between study visits and development of recently diagnosed (de novo) cohorts to foster identification of the earliest markers of disease onset

    Effects of antiplatelet therapy on stroke risk by brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases: subgroup analyses of the RESTART randomised, open-label trial

    Get PDF
    Background Findings from the RESTART trial suggest that starting antiplatelet therapy might reduce the risk of recurrent symptomatic intracerebral haemorrhage compared with avoiding antiplatelet therapy. Brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases (such as cerebral microbleeds) are associated with greater risks of recurrent intracerebral haemorrhage. We did subgroup analyses of the RESTART trial to explore whether these brain imaging features modify the effects of antiplatelet therapy

    Promoting Independence Through quality dementia Care at Home (PITCH): a research protocol for a stepped-wedge cluster-randomised controlled trial

    Get PDF
    BACKGROUND: Home care service providers are increasingly supporting clients living with dementia. Targeted and comprehensive dementia-specific training for home care staff is necessary to meet this need. This study evaluates a training programme delivered to care staff (paid personal carers) of clients living with dementia at home. METHODS: This study is a pragmatic stepped-wedge cluster-randomised controlled trial (SW-CRT). Home care workers (HCWs) from seven home care service providers are grouped into 18 geographical clusters. Clusters are randomly assigned to intervention or control groups. The intervention group receives 7 h of a dementia education and upskilling programme (Promoting Independence Through quality dementia Care at Home [PITCH]) after baseline measures. The control group receives PITCH training 6 months after baseline measures. This approach will ensure that all participants are offered the program. Home care clients living with dementia are also invited to participate, as well as their family carers. The primary outcome measure is HCWs’ sense of competence in dementia care provision. DISCUSSION: Upskilling home care staff is needed to support the increasing numbers of people living with dementia who choose to remain at home. This study uses a stepped-wedge cluster-randomised trial to evaluate a training programme (PITCH) for dementia care that is delivered to front-line HCWs. TRIAL REGISTRATION: anzctr.org.au; ACTRN12619000251123. Registered on 20 February 2019

    Level of agreement between frequently used cardiovascular risk calculators in people living with HIV

    Get PDF
    Objectives The aim of the study was to describe agreement between the QRISK2, Framingham and Data Collection on Adverse Events of Anti‐HIV Drugs (D:A:D) cardiovascular disease (CVD) risk calculators in a large UK study of people living with HIV (PLWH). Methods PLWH enrolled in the Pharmacokinetic and Clinical Observations in People over Fifty (POPPY) study without a prior CVD event were included in this study. QRISK2, Framingham CVD and the full and reduced D:A:D CVD scores were calculated; participants were stratified into ‘low’ ( 20%) categories for each. Agreement between scores was assessed using weighted kappas and Bland–Altman plots. Results The 730 included participants were predominantly male (636; 87.1%) and of white ethnicity (645; 88.5%), with a median age of 53 [interquartile range (IQR) 49–59] years. The median calculated 10‐year CVD risk was 11.9% (IQR 6.8–18.4%), 8.9% (IQR 4.6–15.0%), 8.5% (IQR 4.8–14.6%) and 6.9% (IQR 4.1–11.1%) when using the Framingham, QRISK2, and full and reduced D:A:D scores, respectively. Agreement between the different scores was generally moderate, with the highest level of agreement being between the Framingham and QRISK2 scores (weighted kappa = 0.65) but with most other kappa coefficients in the 0.50–0.60 range. Conclusions Estimates of predicted 10‐year CVD risk obtained with commonly used CVD risk prediction tools demonstrate, in general, only moderate agreement among PLWH in the UK. While further validation with clinical endpoints is required, our findings suggest that care should be taken when interpreting any score alone

    Crop Updates 2006 - Lupins and Pulses

    Get PDF
    This session covers sixty six papers from different authors: 2005 LUPIN AND PULSE INDUSTRY HIGHLIGHTS 1. Lupin Peter White, Department of Agriculture 2. Pulses Mark Seymour, Department of Agriculture 3. Monthly rainfall at experimental sites in 2005 4. Acknowledgements Amelia McLarty EDITOR 5. Contributors 6. Background Peter White, Department of Agriculture 2005 REGIONAL ROUNDUP 7. Northern agricultural region Wayne Parker, Department of Agriculture 8. Central agricultural region Ian Pritchard and Bob French, Department of Agriculture 9. Great southern and lakes Rodger Beermier, Department of Agriculture 10. South east region Mark Seymour, Department of Agriculture LUPIN AND PULSE PRODUCTION AGRONOMY AND GENETIC IMPROVEMENT 11. Lupin Peter White, Department of Agriculture 12. Narrow-leafed lupin breeding Bevan Buirchell, Department of Agriculture 13. Progress in the development of pearl lupin (Lupinus mutabilis) for Australian agriculture, Mark Sweetingham1,2, Jon Clements1, Geoff Thomas2, Roger Jones1, Sofia Sipsas1, John Quealy2, Leigh Smith1 and Gordon Francis1 1CLIMA, The University of Western Australia 2Department of Agriculture 14. Molecular genetic markers and lupin breeding, Huaan Yang, Jeffrey Boersma, Bevan Buirchell, Department of Agriculture 15. Construction of a genetic linkage map using MFLP, and identification of molecular markers linked to domestication genes in narrow-leafed lupin (Lupinus augustiflolius L) Jeffrey Boersma1,2, Margaret Pallotta3, Bevan Buirchell1, Chengdao Li1, Krishnapillai Sivasithamparam2 and Huaan Yang1 1Department of Agriculture, 2The University of Western Australia, 3Australian Centre for Plant Functional Genomics, South Australia 16. The first gene-based map of narrow-leafed lupin – location of domestication genes and conserved synteny with Medicago truncatula, M. Nelson1, H. Phan2, S. Ellwood2, P. Moolhuijzen3, M. Bellgard3, J. Hane2, A. Williams2, J. Fos‑Nyarko4, B. Wolko5, M. Książkiewicz5, M. Cakir4, M. Jones4, M. Scobie4, C. O’Lone1, S.J. Barker1, R. Oliver2, and W. Cowling1 1School of Plant Biology, The University of Western Australia, 2Australian Centre for Necrotrophic Fungal Pathogens, Murdoch University, 3Centre for Bioinformatics and Biological Computing, Murdoch University, 4School of Biological Sciences and Biotechnology, SABC, Murdoch University,5Institute of Plant Genetics, Polish Academy of Sciences, Poznań, Poland 17. How does lupin optimum density change row spacing? Bob French and Laurie Maiolo, Department of Agriculture 18. Wide row spacing and seeding rate of lupins with conventional and precision seeding machines Martin Harries, Jo Walker and Murray Blyth, Department of Agriculture 19. Influence of row spacing and plant density on lupin competition with annual ryegrass, Martin Harries, Jo Walker and Murray Blyth, Department of Agriculture 20. Effect of timing and speed of inter-row cultivation on lupins, Martin Harries, Jo Walker and Steve Cosh, Department of Agriculture 21. The interaction of atrazine herbicide rate and row spacing on lupin seedling survival, Martin Harries and Jo Walker Department of Agriculture 22. The banding of herbicides on lupin row crops, Martin Harries, Jo Walker and Murray Blyth, Department of Agriculture 23. Large plot testing of herbicide tolerance of new lupin lines, Wayne Parker, Department of Agriculture 24. Effect of seed source and simazine rate of seedling emergence and growth, Peter White and Greg Shea, Department of Agriculture 25. The effect of lupin row spacing and seeding rate on a following wheat crop, Martin Harries, Jo Walker and Dirranie Kirby, Department of Agriculture 26. Response of crop lupin species to row spacing, Leigh Smith1, Kedar Adhikari1, Jon Clements2 and Patrizia Guantini3, 1Department of Agriculture, 2CLIMA, The University of Western Australia, 3University of Florence, Italy 27. Response of Lupinus mutabilis to lime application and over watering, Peter White, Leigh Smith and Mark Sweetingham, Department of Agriculture 28. Impact of anthracnose on yield of Andromeda lupins, Geoff Thomas, Kedar Adhikari and Katie Bell, Department of Agriculture 29. Survey of lupin root health (in major production areas), Geoff Thomas, Ken Adcock, Katie Bell, Ciara Beard and Anne Smith, Department of Agriculture 30. Development of a generic forecasting and decision support system for diseases in the Western Australian wheatbelt, Tim Maling1, Art Diggle1,2, Debbie Thackray1, Kadambot Siddique1 and Roger Jones1,2 1CLIMA, The University of Western Australia, 2Department of Agriculture 31.Tanjil mutants highly tolerant to metribuzin, Ping Si1, Mark Sweetingham1,2, Bevan Buirchell1,2 and Huaan Yang l,2 1CLIMA, The University of Western Australia, 2Department of Agriculture 32. Precipitation pH vs. yield and functional properties of lupin protein isolate, Vijay Jayasena1, Hui Jun Chih1 and Ken Dods2 1Curtin University of Technology, 2Chemistry Centre 33. Lupin protein isolation with the use of salts, Vijay Jayasena1, Florence Kartawinata1,Ranil Coorey1 and Ken Dods2 1Curtin University of Technology, 2Chemistry Centre 34. Field pea, Mark Seymour, Department of Agriculture 35. Breeding highlights Kerry Regan1,2, Tanveer Khan1,2, Stuart Morgan1 and Phillip Chambers1 1Department of Agriculture, 2CLIMA, The University of Western Australia 36. Variety evaluation, Kerry Regan1,2, Tanveer Khan1,2, Jenny Garlinge1 and Rod Hunter1 1Department of Agriculture, 2CLIMA, The University of Western Australia 37. Days to flowering of field pea varieties throughout WA Mark Seymour1, Ian Pritchard1, Rodger Beermier1, Pam Burgess1 and Dr Eric Armstrong2 Department of Agriculture, 2NSW Department of Primary Industries, Wagga Wagga 38. Semi-leafless field peas yield more, with less ryegrass seed set, in narrow rows, Glen Riethmuller, Department of Agriculture 39. Swathing, stripping and other innovative ways to harvest field peas, Mark Seymour, Ian Pritchard, Rodger Beermier and Pam Burgess, Department of Agriculture 40. Pulse demonstrations, Ian Pritchard, Wayne Parker, Greg Shea, Department of Agriculture 41. Field pea extension – focus on field peas 2005, Ian Pritchard, Department of Agriculture 42. Field pea blackspot disease in 2005: Prediction versus reality, Moin Salam, Jean Galloway, Pip Payne, Bill MacLeod and Art Diggle, Department of Agriculture 43. Pea seed-borne mosaic virus in pulses: Screening for seed quality defects and virus resistance, Rohan Prince, Brenda Coutts and Roger Jones, Department of Agriculture, and CLIMA, The University of Western Australia 44. Yield losses from sowing field peas infected with pea seed-borne mosaic virus, Rohan Prince, Brenda Coutts and Roger Jones, Department of Agriculture, and CLIMA, The University of Western Australia 45. Desi chickpea, Wayne Parker, Department of Agriculture 46. Breeding highlights, Tanveer Khan 1,2, Pooran Gaur3, Kadambot Siddique2, Heather Clarke2, Stuart Morgan1and Alan Harris1, 1Department of Agriculture2CLIMA, The University of Western Australia, 3International Crop Research Institute for Semi Arid Tropics (ICRISAT), India 47. National chickpea improvement program, Kerry Regan1, Ted Knights2 and Kristy Hobson3,1Department of Agriculture, 2Agriculture New South Wales 3Department of Primary Industries, Victoria 48. Chickpea breeding lines in CVT exhibit excellent ascochyta blight resistance, Tanveer Khan1,2, Alan Harris1, Stuart Morgan1 and Kerry Regan1,2, 1Department of Agriculture, 2CLIMA, The University of Western Australia 49. Variety evaluation, Kerry Regan1,2, Tanveer Khan1,2, Jenny Garlinge2 and Rod Hunter2, 1CLIMA, The University of Western Australia 2Department of Agriculture 50. Desi chickpeas for the wheatbelt, Wayne Parker and Ian Pritchard, Department of Agriculture 51. Large scale demonstration of new chickpea varieties, Wayne Parker, MurrayBlyth, Steve Cosh, Dirranie Kirby and Chris Matthews, Department of Agriculture 52. Ascochyta management with new chickpeas, Martin Harries, Bill MacLeod, Murray Blyth and Jo Walker, Department of Agriculture 53. Management of ascochyta blight in improved chickpea varieties, Bill MacLeod1, Colin Hanbury2, Pip Payne1, Martin Harries1, Murray Blyth1, Tanveer Khan1,2, Kadambot Siddique2, 1Department of Agriculture, 2CLIMA, The University of Western Australia 54. Botrytis grey mould of chickpea, Bill MacLeod, Department of Agriculture 55. Kabuli chickpea, Kerry Regan, Department of Agriculture, and CLIMA, The University of Western Australia 56. New ascochyta blight resistant, high quality kabuli chickpea varieties, Kerry Regan1,2, Kadambot Siddique2, Tim Pope2 and Mike Baker1, 1Department of Agriculture, 2CLIMA, The University of Western Australia 57. Crop production and disease management of Almaz and Nafice, Kerry Regan and Bill MacLeod, Department of Agriculture, and CLIMA, The University of Western Australia 58. Faba bean,Mark Seymour, Department of Agriculture 59. Germplasm evaluation – faba bean, Mark Seymour1, Tim Pope2, Peter White1, Martin Harries1, Murray Blyth1, Rodger Beermier1, Pam Burgess1 and Leanne Young1,1Department of Agriculture, 2CLIMA, The University of Western Australia 60. Factors affecting seed coat colour of faba bean during storage, Syed Muhammad Nasar-Abbas1, Julie Plummer1, Kadambot Siddique2, Peter White 3, D. Harris4 and Ken Dods4.1The University of Western Australia, 2CLIMA, The University of Western Australia, 3Department of Agriculture, 4Chemistry Centre 61. Lentil,Kerry Regan, Department of Agriculture, and CLIMA, The University of Western Australia 62. Variety and germplasm evaluation, Kerry Regan1,2, Tim Pope2, Leanne Young1, Phill Chambers1, Alan Harris1, Wayne Parker1 and Michael Materne3, 1Department of Agriculture 2CLIMA, The University of Western Australia, 3Department of Primary Industries, Victoria Pulse species 63. Land suitability for production of different crop species in Western Australia, Peter White, Dennis van Gool, and Mike Baker, Department of Agriculture 64. Genomic synteny in legumes: Application to crop breeding, Huyen Phan1, Simon Ellwood1, J. Hane1, Angela Williams1, R. Ford2, S. Thomas3 and Richard Oliver1,1Australian Centre of Necrotrophic Plant Pathogens, Murdoch University 2BioMarka, School of Agriculture and Food Systems, ILFR, University of Melbourne 3NSW Department of Primary Industries 65. ALOSCA – Development of a dry flow legume seed inoculant, Rory Coffey and Chris Poole, ALOSCA Technologies Pty Ltd 66. Genetic dissection of resistance to fungal necrotrophs in Medicago truncatula, Simon Ellwood1, Theo Pfaff1, Judith Lichtenzveig12, Lars Kamphuis1, Nola D\u27Souza1, Angela Williams1, Emma Groves1, Karam Singh2 and Richard Oliver1 1Australian Centre of Necrotrophic Plant Pathogens, Murdoch University, 2CSIRO Plant Industry APPENDIX I: LIST OF COMMON ACRONYM
    corecore